Glosas marginales al escrito del Sr. Cuesta Dutari
«Observaciones al cuaderno titulado
Apuntes introductorios a la lógica matemática elemental
por Lorenzo Peña»
Sumario
Preludio (2013)
Al regresar a España el 11 de septiembre de 1983, obtuve (tras peripecias que no hacen al caso) un contrato como profesor adjunto no-numerario de la Facultad de Filosofía y Letras de la Universidad de León para enseñar filosofía del lenguaje. Me incorporé a mi puesto docente en la hermosísima y querida capital leonesa a comienzos de octubre.
Como un año y medio después, se brindó a los profesores de la Facultad la posibilidad de presentar manuscritos para su publicación por el servicio editorial de la Universidad. Entre unos cuantos inéditos que yo había traído de mi segunda etapa como profesor en la Pontificia Universidad Católica de Quito figuraba uno que se titulaba Apuntes introductorios a la lógica matemática elemental, que yo había utilizado provechosamente en mis clases de lógica matemática en la capital ecuatoriana. Lo sometí a la consideración de las autoridades universitarias.
También envié una copia del texto a Manuel Sacristán, quien remitió al rectorado leonés un informe muy elogioso. Sin embargo, el relator que había sido elegido por el servicio de publicaciones no era ningún lógico, sino un profesor salmantino de matemáticas (sin duda porque --para quienes no estuvieran al tanto de la evolución de las disciplinas-- el título mismo de la obra evocaba más la pertenencia al ámbito de la matemática que al de la lógica; y es que, por muy matemática que sea la lógica matemática, es, ante todo, lógica, que es lo sustantivo, mientras que su característica matemática es adjetivo). Ese matemático salmantino resultó ser el catedrático jubilado D. Norberto Cuesta Dutari (1907-1989).NOTA 1 Éste (en una de sus últimas producciones) desempeñó esa tarea de relator con el celo que el lector puede apreciar leyendo estas páginas.NOTA 2
El referido opúsculo nunca se publicará a imprenta (estaba prepublicado a multicopista en Quito en 1980), pero han circulado copias del mismo, varias de las cuales se encuentran en bibliotecas académicas.NOTA 3 También ha sido referido o comentado en varias obras, como las tres siguientes:
Una buena parte del contenido de esos Apuntes vendrá refundido, unos años después, en el libro Introducción a las lógicas no-clásicas, México: UNAM, 1993, ISBN 968-36-3451-6. Por tal razón no he considerado que valga la pena escrutar aquel viejo manual policopiado para ponerlo ahora a disposición de los lectores en formato digital.
¿Eran razonables mis respuestas al aniquilador informe de D. Norberto? Dejo al lector que lo juzgue. No he podido escrutar el informe mismo, por no prestarse a ello la fotocopia de mala calidad (por otro lado sepultada en algún rincón de mis archivos, si no se ha extraviado entre tanto).NOTA 5 Aparte de su significación meramente biográfica, el interés de mis reflexiones de entonces consiste en que la defensa de mi opúsculo era una argumentación a favor de la lógica contradictorial frente a la intransigencia monopolística de los adeptos dogmáticos de la lógica clásica, quienes consideraban insoportable la publicación de obras que discutieran y zarandeasen su dominio en la cátedra. Era una batalla por la lógica, por otra lógica distinta de la oficial, pero también por la libertad de expresión académica.
Lo que sigue es ya el texto que escribí en 1986, en el cual sólo me he permitido introducir pequeñísimas correcciones estilísticas.
0.-- Consideraciones preliminares
El escrito del Sr. Cuesta está dividido en 7 secciones. Esperaríase en un comentario como el que parece debieran constituir unas «Observaciones» de tal índole que se dedicara lo más del mismo a un análisis, por critico que fuera, del contenido teorético del «cuaderno» al cual dicen estar dedicadas.
Pero no. De hecho, apenas entra el Sr. Cuesta a estudiar el contenido teorético de dicho opúsculo; menos todavía estudia, ni siquiera por encima, las modelizaciones lógicas propuestas, ni los análisis detallados que en mi trabajo aparecen de diversos sistemas, con clasificaciones de los mismos pertenecientes tanto al ámbito de la teoría de modelos como al de la teoría de pruebas.
La fe superconsistencialista del Sr. Cuesta (su creencia dogmática en la incontrovertible e incuestionable validez y corrección de sistemas superconsistentes en general y de la lógica clásica en particular) llévalo probablemente a no querer ni siquiera plantearse con seriedad las cuestiones teoréticas que aborda mi trabajo.
Limítase en general a comentarios sarcásticos y rechazos preliminares no mediados por ninguna consideración atenta de mis tesis ni, menos todavía, de mis argumentaciones y análisis. En esos rechazos menudean referencias literarias fuera de lugar y comparaciones jocosas que suplen la falta de argumentos.
El Sr. Cuesta muestra, desde luego, total desconocimiento de la filosofía analítica, patentizando que está totalmente ajeno al espíritu y estilo argumentativos y dilucidativos de la misma. Se admira y rasga las vestiduras con aspavientos ante lo que son hoy, en medios de filósofos analíticos y lógicos no clásicos, lugares comunes, mientras que tilda de perogrulladas que no valdría la pena decir tesis que, cualquiera que sea su plausibilidad, distan de ser irrefragables y de hecho son recusadas por los más estudiosos de la materia. Únense a ello exabruptos y soeces expresiones peyorativas del peor gusto.
De las seis páginas a máquina que cubren estas «Observaciones» dos y media (las Secciones 5 --que empieza en la p.3-- y 6 --que termina en la p.6--) están dedicadas a temas ajenos por completo a mi trabajo. Pretenden ser una exhibición aparatosa de los conocimientos histórico-matemáticos del Sr. Cuesta; y a lo largo de esas páginas sólo se encuentran cuatro escuetísimas referencias a mi trabajo: una insultante por demás, otra impertinente, la tercera una alusión tendenciosa y la cuarta irrelevante para el contenido teorético de mi trabajo; además, contiénense en esas páginas falsedades e inexactitudes que dejan poco lucido el alarde del Sr. Cuesta de resumirnos en esas páginas lo que él sabe de la historia de la lógica matemática.
Voy a ir comentando cada una de las secciones del escrito del Sr. Cuesta, según el título que él pone en cada caso a dichas secciones.
«1.-- Lo que intenta el autor»
No, el fin que persiguen los Apuntes no es ése, sino el de brindar a estudiantes universitarios de carreras de letras (de filosofía y de filología) un manual introductorio a la lógica matemática elemental, concretamente al cálculo sentencial, que escape a los procedimientos dogmáticos --tan indubitables y caros para el Sr. Cuesta y los de su misma cuerda-- que presentan como «la» lógica un sistema particular de lógica, en vez de ir presentando desde el comienzo abanicos de sistemas lógicos alternativos para, en función de criterios filosóficos, ir optando por unos u otros.
El uso de notaciones simbólicas para representar fragmentos del discurso en lengua natural no es ni mucho menos original de mi trabajo, sino que éste se inscribe en la línea de cuanto al respecto se ha llevado a cabo en la filosofía analítica contemporánea desde los años 40.
En verdad ni siquiera es correcto el uso que hace el Sr. Cuesta del verbo `traducir' en ese contexto. Como lo ha puesto de relieve Quine en trabajos que ya hoy conoce todo el mundo (salvo acaso el Sr. Cuesta), el mejor modo de ver las notaciones simbólicas es el de concebirlas como representaciones esquemáticas de mensajes en lengua natural --en lengua natural regimentada, si se quiere, pero que no por ello deja de pertenecer al ámbito de la lengua natural o hablada en general.
(En verdad, el fundador de la lógica matemática, Gottlob Frege --a quien ignora olímpicamente el Sr. Cuesta a la hora de trazar su versión de los orígenes históricos de la lógica matemática en las páginas 3 a 6 de su escrito-- se proponía ya, al articular el primer sistema de lógica matemática en una notación simbólica, más que acuñar mediante ésta última un lenguaje diverso del natural, elaborar una escritura [de ahí el término que utiliza: `Beggriffschrift', o sea: `conceptografía'] para representar por escrito ciertos fragmentos del discurso en lengua natural. Y, si bien habla a menudo de un lenguaje artificial para expresar en él el saber matemático, puede eso deber entenderse con las paráfrasis adecuadas a tenor de esa noción fregeana de la escritura conceptográfica.)
Lo deja a uno un tanto desconcertado el asombro del Sr. Cuesta ante el planteamiento de la tarea de representar simbólicamente --mediante letras esquemáticas y gracias a lecturas apropiadas-- fragmentos del habla en lengua natural. ¿Conoce algo el Sr. Cuesta --que tanto presume de ser un matemático-- la obra de Richard Montague, la de Cresswell y la de tantos otros matemáticos que, con fortuna diversa, han emprendido esa tarea? Y, si lo que le causa desazón --o, mejor, irritación-- es el recurso a lógicas no clásicas con esa finalidad, entonces ¿qué opina de la obra de Lofti Zadeh, de Goguen, de G. Lakoff, para no mencionar a los relevantistas, conexivistas y conceptivistas, todos los cuales sostienen que el discurso en lengua natural es informalizable con los magros recursos de la lógica clásica?
Esperaría uno que un ataque tan furibundo y con tan destempladas cajas como el que contra los Apuntes lanza el Sr. Cuesta estuviera enfilado contra lo que es original en ese trabajo --y en general en toda mi producción filosófica y lógico-matemática. Pero no es así (salvo de pasada, y eso en un solo punto que luego trataré). Lo que más increpa el Sr. Cuesta es algo que hoy constituye haber común en una vasta comunidad científica, como p.ej. los intentos de formalizar fragmentos lo más amplios posible del habla en lengua natural.
Sí, es anhelo compartido en esa comunidad científica alcanzar esa representación formalizada tanto de los discursos correctos como de los sofísticos, justamente para poder someterlos a patrones de enjuiciamiento rigurosos y poder detectar así los sofismas. Sólo que --mal que le pese al dogmático y ciego absolutismo del Sr. Cuesta-- qué discursos sean sofísticos y cuáles no lo sean no es asunto que quepa decidir de una vez por todas e independientemente de qué código de reglas de inferencia se esté tomando como patrón, explícita o implícitamente.
El modus ponens le parecerá al Sr. Cuesta infrangible; y, si bien el que esto escribe también lo considera válido (mas no indubitablemente tal), algunos lógicos lo han rechazado, no dándole cabida en los sistemas que han puesto en pie, de suerte que --de ser válidos tales sistemas como adecuados patrones de inferencia correcta-- serían sofísticos ciertos argumentos que sólo utilizaran como regla de deducción ésa del modus ponens.
Por el contrario, son lógicamente no-válidos (y, por ende, sofísticos) muchos razonamientos bastante banales en los que figuran construcciones comparativas, si el criterio de lo lógicamente válido es la lógica clásica: no se sigue --según esa lógica, que es aquella cuya incuestionabilidad es ciegamente asumida por el Sr. Cuesta-- de que Laponia sea fría y de que Siberia sea más fría que Laponia que Siberia es fría: eso es, según la lógica clásica --y, por lo tanto, según el Sr. Cuesta--, un sofisma (si sofisma es una secuencia de enunciados <p1, ... , pn, q> tales que --en el sistema lógico que uno adopte-- no es una regla de inferencia derivable la regla {p1,...,pn}∴ q).
Por lo que hace al tono airado con el que el Sr. Cuesta manifiesta su extrañeza, cólera o lo que sea, en contra de que en mi opúsculo «hable» no sólo de Engels y Lenin, sino también de San Juan de la Cruz y Sta. Teresa de Jesús, dado el contexto de lo que dice (en particular la frase tras el punto y seguido), se pregunta uno si considera autores de argucias, sofismas y embustes a esos grandes pensadores de diferente signo --todos los cuales han juzgado verdaderos ciertos enunciados contradictorios y considerado que hay contradicciones verdaderas--. El habitual modo entimemático de argumentar del Sr. Cuesta impide captar cuál sea su pensamiento al respecto: quizá para él forma eso parte de lo obvio.
Tras haber tan mal expuesto lo que cree el Sr. Cuesta que constituye la meta perseguida por mi opúsculo, pasa a renglón seguido a pronunciar un veredicto condenatorio:
¡Qué le va uno a hacer, Sr. Cuesta! ¡Así es de infantil! Como contesta Sócrates a Hipias, es uno lo que puede, no lo que quiere. Es curioso que un matemático --como el Sr. Cuesta se jacta de ser-- se fije tan poco en las partes técnicas del opúsculo que comenta y (o, mejor dicho, que dice estar comentando) y pare mientes tan sólo en los lugares no técnicos, dedicados a facilitar la lectura al lector menos avezado. No nos dice el Sr. Cuesta ni exactamente cuáles son infantiles de entre los «pretextos» aducidos en la p.24 de mi opúsculo ni en qué son infantiles.
Cita esta frase: «la formalización de enunciados en lengua natural plantea difíciles problemas en los que no podemos entrar aquí», añadiendo, entre paréntesis, este comentario: «el reseñante no sabe por qué». Es que al reseñante le falta todavía por aprender muchas cosas. Se diría que acaba de salir del cascarón. Si no se podía entrar en ese lugar de mi opúsculo en las aludidas dificultades es porque éstas son demasiado considerables y, por otro lado, asunto a tratar en lugar aparte, a saber: en trabajos consagrados a la sintaxis y la semántica de la lengua natural. Temas de esa índole aparecen en mi opúsculo sólo marginalmente, lo que no quita para que los sistemas lógicos diseñados y expuestos en los Apuntes sean de enorme utilidad para (contribuir a) un tratamiento apropiado de (fragmentos de) la lengua natural.
Inmediatamente después cita el Sr. Cuesta un pasaje de 20 líneas de mi opúsculo, acerca de unas reglas de paráfrasis en lengua natural de oraciones con modificadores aléticos (ciertos modificadores adformulares, o adfórmulas en la terminología de Montague) y con comparativos para, por todo comentario, exclamar:
¡Pobre Sr. Cuesta! Su exquisita sensibilidad aristocrática rehuye lo vulgar. Así es uno de plebeyo, Sr. Cuesta. Ud. está en el lugar de la gente fina, como Hipias y otros sofistas frente a Sócrates, a quien reprochaban igualmente sus ejemplos vulgares, como ollas y demás cosas ramplonas y ordinarias. Al Sr. Cuesta parecen molestarlo nombres de gente de pueblo, como `Rita' o `Telesforo': él pertenece sin duda a la mejor sociedad, a la gente de postín.
En todo caso, estoy contentísimo de que, aunque sea con vituperios, manifieste el Sr. Cuesta su adhesión a las paráfrasis que yo propongo. Sólo que se pasa de rosca: la gran mayoría de los estudiosos rechaza esas paráfrasis que al Sr. Cuesta le parecen «algo tan obvio». Consulte el Sr. Cuesta, qué se yo, cualquier manual elemental de aplicación de lógica matemática al tratamiento de la lengua natural, p.ej. el libro que todo el mundo tiene (salvo quizá el Sr. Cuesta, poco al día en estos asuntos) All that Linguists Have Always Wanted to Know About Logic de James D. McCawley (Oxford: Blackwell, 1981), en las páginas 365-6. Verá allí un rechazo de ese tipo de paráfrasis. (No voy a citar fuentes más esotéricas, seguramente menos accesibles para el Sr. Cuesta.)
Claro que en ese punto el inconsecuente es el Sr. Cuesta: si se adhiere uno a la lógica clásica, entonces no hay grados de verdad. Por consiguiente, no puede decirse «Es hasta cierto punto verdad que», puesto que lo verdadero sería siempre y forzosamente del todo verdadero, nunca verdadero sólo hasta cierto punto (ni tendría sentido decir esto último). De ahí que los adeptos de enfoques como la lógica clásica --o incluso de otras lógicas superconsistentes-- no admitan parafrasear «Evagro es hasta cierto punto atlético» como «Es hasta cierto punto verdad que Evagro es atlético». Los grados, nos dicen, serán grados de lo que sea, mas nunca de verdad. Cómo case el Sr. Cuesta su propio clasicismo dogmático e intransigente con su aceptación implícita de grados de verdad (o, por lo menos, de paráfrasis, por él motejadas de obvias, que sólo son defendibles si hay grados de verdad) es, evidentemente, asunto suyo en el que un servidor no va a entrar.
«2.-- Operadores lógicos de Don Lorenzo Peña»
No, no la demuestro, ni la formulo. Si es motivo fundado contra un autor el que no demuestre una afirmación que él no hace, entonces puédesenos reprochar igualmente a mí y al Sr. Cuesta (y a Ortega y Gasset) no demostrar que la Luna está hecha de queso rojo. No tengo ni idea de dónde saca el Sr. Cuesta ese presunto metateorema. Lo único que yo digo al respecto en la p. 4 de mi opúsculo es que un esquema no es una oración sino que hace las veces de una oración cualquiera de una cierta forma exhibida por el esquema, a saber una que resulte de reemplazar uniformemente las diversas letras esquemáticas que en él figuren por sendas oraciones. Naturalmente no es lo mismo decir «una oración cualquiera de esa forma» que «una oración cualquiera» a secas.
Además, lo que yo digo no es nada original, sino lo que todo lógico sabe: cómo se usan las letras esquemáticas --que no variables proposicionales (fuera más riguroso decir «oracionales» o «sentenciales», pues proposición, en el sentido técnico usado más comúnmente en la filosofía analítica, es una entidad extralingüística designada por una oración); al desconocer mi tratamiento con letras esquemáticas y retrotraerse a variables sentenciales, incurre el Sr. Cuesta en la confusión de no distinguir dos modos radicalmente diversos de entender el cálculo sentencial:
1º) el de von Neumann, que es el por mí adoptado --si bien yo uso como letras esquemáticas minúsculas, mientras que en otras exposiciones se usan como esquemáticas sólo ciertas mayúsculas--, que no requiere regla de sustitución;
2º) el que se sirve de variables sentenciales y sí requiere regla de sustitución.
No voy a entrar aquí a discutir los (de)méritos respectivos, sino limitarme a recordar que precisamente el problema con las variables sentenciales es el de la determinación de un campo de variación apropiado, problema que no se plantea con las letras esquemáticas. Con éstas, además, estamos, no en un lenguaje artificial, sino en una notación artificial de fragmentos de la lengua natural.
El Sr. Cuesta puede leer entre la p.58 y la 87 de mi opúsculo demostraciones de buen número de esquemas teoremáticos. Si hubiera entendido qué es un esquema, sabría que en cada caso sólo necesita reemplazar uniformemente las letras esquemáticas por sendas oraciones cualesquiera para tener teoremas en lengua natural. Las demostraciones son, pues, en cada caso esquemas de pruebas, ya que, para cada reemplazamiento uniforme de letras por oraciones a todo lo largo de una de tales demostraciones, se tendrá una prueba específica del teorema, en lengua natural, que se trate de demostrar --o sea: de la oración que constituya el último eslabón de la secuencia. Como se trata de esquemas lógicos, se aplican a cualquier ámbito, científico o no.
No se han brindado lecturas de instancias de tales esquemas en el opúsculo para hacer que éste sea sucinto; justamente en la aplicación del opúsculo en un curso pueden el profesor y los alumnos dedicarse, entre otras, a esa labor. A ella puede dedicarse también el Sr. Cuesta, que tan a disgusto se mueve en páginas embutidas de signos.
Sencillamente, el opúsculo no está consagrado a la fundamentación de la matemática, ni siquiera de la aritmética (tarea que he llevado a cabo en un trabajo evidentemente más difícil, y cuya lectura sería imposible al Sr. Cuesta, pues es mucho más técnico y «embutido» en muchos más signos).
Lo que no veo bien es a santo de qué eso de D. Sandalio. Más bien se coloca el propio Sr. Cuesta en la posición de tal personaje, al recusar al lógico que demuestra teoremas artificiales y no querer salirse de los que le presenta el «juego» efectivo de un tratado de teoría de números, análisis matemático o química orgánica.
«3.-- Conclusiones del Sr. Peña sobre las situaciones difusas»
El Sr. Cuesta se suma así a la tesis de que die Weltgeschichte ist das Weltgericht. Pero ¿qué es lo que aventará el juicio histórico? A quien esto escribe parécele claro que lo que aventará el juicio histórico, lo que ya está siendo, gracias a Dios, aventado, es el ultraconservadurismo y reaccionarismo doctrinal de los adeptos del dogmatismo clasicista, de los recusadores de las situaciones difusas como situaciones ontológicas.
Es el Sr. Cuesta (investigador o no) quien, desde luego, se queda, y está, confuso, lleno de confusión y de confusiones. Si hubiera leído aunque sólo fuera alguno de los trabajos míos que (al final de su comentario) presume de conocer por el título, sabría que nada tiene que ver la decidibilidad o indecibilidad de la pertenencia a un conjunto con el carácter difuso de éste. Es indecidible si el número de pelos en la cabeza de Chindasvinto era par o non (o sea: si el conjunto de tales pelos pertenecía a un número par o a un número non); pero el conjunto de conjuntos (pertenecientes a un número) par es no-difuso (al menos, si es difuso, no lo es en virtud de esa indecidibilidad).
El conjunto de teoremas hasta del cálculo cuantificacional clásico de primer orden es igualmente indecidible, mas no difuso. Los conjuntos difusos (que no confusos, como confusivamente los llama el Sr. Cuesta) son conjuntos a los que ciertas cosas pertenecen en medidas no plenas. La existencia de tales conjuntos (o al menos el reconocimiento de los mismos en un plano de hacer ciencia como si existieran) es hoy un postulado entre científicos de ramas tan diferentes como la geografía, la medicina, la economía, diversos campos de la matemática, la ciencia de la computación; y algún que otro filósofo, de esos «se-dicentes» que con ceño son estigmatizados por el Sr. Cuesta. ¡Qué le vamos a hacer si no logramos ser bienquistos de los adalides del conservadurismo clasicista!
Tras citar la última frase del cap. VII de mi opúsculo, en la que se dice que, para ser consecuente, quien reconozca situaciones difusas debe aceptar un sistema contradictorial, el Sr. Cuesta apostilla con este chascarrillo:
Con tan lapidaria condena despacha el Sr. Cuesta toda la prolija argumentación de mi opúsculo en torno a diversas clases de inconsistencia negacional, a diversos tipos de sistemas con o sin principios de tercio excluso y de no-contradicción, en diversas variantes y formulaciones. No aparece ninguna alusión en su comentario al contenido teorético del capítulo que tan alegre y desenfadadamente rechaza con esa observación.
De haberlo leído, habríase enterado el Sr. Cuesta de que hay muy diversas cosas que pueden recibir esa denominación de Ley de «no contradicción»; que hay situaciones en las que son teoremáticas unas formulaciones del principio de contradicción, pero no otras; que no es lo mismo el que en un sistema sea teoremático el (o, mejor dicho: un) principio de no-contradicción que el que ese sistema carezca de contradicciones o antinomias (de un par de teoremas uno de los cuales sea una negación del otro), sino que, a este respecto, se dan todas las combinaciones imaginables: sistemas con principio de no contradicción y con contradicciones, sin ninguna de las dos cosas, con la primera mas sin la segunda (el clásico, p.ej.) y con la segunda sin la primera (las lógicas de Lukasiewicz, p.ej.). Habríase enterado asimismo el Sr. Cuesta de la diferencia entre supercontradicciones, siempre falsas, y meras contradicciones, muchas de ellas (no todas) verdaderas, y aseveradas como tales en la conversación corriente, en diversas teorías filosóficas --y hoy también en algunas teorías físicas, que desde luego al Sr. Cuesta le sonarían a cosa de embusteros, novedades nefandas contra las que es bueno arremeter con cualquier medio verbal que esté a su alcance.
Para cerrar esta Sección, el Sr. Cuesta me reta a formalizar el Eutidemo. Fuera quizá más divertido formalizar el propio comentario del Sr. Cuesta sobre mi opúsculo; así aparecería con perfecta claridad la serie de non-sequitur que lo llenan de cabo a rabo.
«4.-- Las explicaderas del sr. Peña»
La desfiguración caricatural que de mi obra hace el Sr. Cuesta raya aquí en lo inaudito. En ningún sitio se dice en el opúsculo que no se vaya a enseñar lógica clásica en él, o que únicamente se vayan a presentar mis propios sistemas lógicos. Es más: mi sistema de cálculo sentencial ni siquiera es presentado (únicamente aparece un fragmento de él). Lo que se expone es un abanico de sistemas alternativos: en un polo, y como caso de extrema simplicidad, está la lógica clásica; al otro polo, un sistema infinivalente que se perfila en el cap. V pero que no se expone en su axiomatización. El sistema axiomático que sí se expone, el sistema At (cap. VIII) es una extensión de la lógica clásica y un fragmento de mi propio sistema lógico. ¿No se ha enterado de nada de todo eso el Sr. Cuesta?
Lo del interés del lector dependerá de quién sea éste. Una utilización del opúsculo denostado por el Sr. Cuesta entre estudiantes universitarios de diversos niveles ha probado que ellos sí se han interesado, y mucho, por la lógica matemática gracias a ese texto. Posiblemente el Sr. Cuesta --a quien parecen simplezas lo que salga de sus consabidos dogmas y de sus aplicaciones matemáticas o químicas-- no se interese por nada que no venga a confirmar sus ideas retrógradas.
Si fuera válido ese criterio que propone el Sr. Cuesta para evaluar un libro de lógica matemática, a saber que cite en la bibliografía a las dos biblias del Sr. Cuesta (el Hilbert-Ackermann y la Introduction de Kleene), entonces habría también de rechazarse, p.ej. (y es sólo un botón de muestra) el del Prof. Wolfgang Rautenberg (catedrático de Matemáticas de la Universidad Libre de Berlín), Klassische und nichtklassische Aussagenlogik (Braunschweig u. Wiesbaden: Vieweg, 1979), uno de los mejores manuales de cálculo sentencial, que seguramente desconoce por completo el Sr. Cuesta, pero que es ahora uno de los más provechosamente utilizados --pese a algunas deficiencias que, sin embargo, no invalidan su elevada calidad.
Sencillamente, la bibliografía de mi opúsculo ha sido confeccionada con el criterio de suministrar al lector al que va destinado un material de consulta restringido en número, pero que completara eficazmente el contenido del opúsculo. Por ello, entre las grandes obras clásicas se citan la de Church y la de Quine. El lector al que va dirigido el libro es un estudiante universitario (graduado o no) de disciplinas de letras. Los dos textos clásicos que cita el Sr. Cuesta me son, desde luego, perfectamente conocidos desde hace bastantes años; pero me han parecido omitibles en una bibliografía confeccionada con ese criterio.
Es falso que la comprensión de los sistemas que expongo en mi opúsculo requiera un conocimiento previo de la lógica clásica. Al decir eso se atiene el Sr. Cuesta, sin más, al viejo dogma de los clasicistas, tan manido (y tan socorrido como argumento dizque contundente contra toda lógica no clásica) de que una lógica no clásica cualquiera presupone la clásica.
Lo de las tablas verticales es ya ridículo: no es lo mismo tablas de verdad verticales que tablas de verdad a secas (¿en qué libros piensa el Sr. Cuesta? Quizá en libros anteriores al descubrimiento de lógicas no-clásicas). Las tablas de verdad verticales para functores clásicos se enseñan hasta a los niños (en formación no universitaria); y mi opúsculo va destinado a una introducción para estudiantes universitarios. De todos modos, es hasta calumnioso lo que dice el Sr. Cuesta, pues en la misma p.14, que cita, tras haberse dicho que el lector conoce probablemente la confección de tablas verticales, se brindan, no obstante, ejemplos de las mismas tanto para el caso de que el lector no las conociera como, de todos modos, para facilitarle más el camino.
Después de esa andanada de vituperios, prosigue así la invectiva del Sr. Cuesta contra mi opúsculo:
¿Puede juzgarse mínimamente bienintencionado el ataque del Sr. Cuesta? Mucho lo dudo. Los lugares que él cita de mi opúsculo dejan bien claro que el estudio del cálculo cuantificacional era postergado a un trabajo ulterior --aparte de que también ha sido expuesto en artículos, ponencias y comunicaciones de carácter más técnico, que el Sr. Cuesta hubiera podido consultar en las revistas especializadas que se vanagloria de conocer.
Mi opúsculo Apuntes introductorios a la lógica matemática elemental tiene un cometido claramente delimitado: introducir a lo elemental en lógica matemática, el cálculo sentencial únicamente, pero con un enfoque investigativamente nuevo y, al hacerlo, facilitar al lector el acceso directo a una serie de nuevos resultados investigativos por mí alcanzados en el estudio de diversos sistemas lógicos --resultados pertenecientes tanto a la teoría de modelos como a la de pruebas.
Fíngese ingenuo (¿o lo es de veras?) el Sr. Cuesta al admirarse de que yo, sin desarrollar en mi opúsculo el cálculo cuantificacional, utilice empero cuantificadores en lengua natural a la hora de dar explicaciones sintácticas y semánticas acerca de los cálculos sentenciales que estudio.
De ser fundada esa objeción, aplicaríase por igual a cualquier presentación del cálculo sentencial diferente de la prototética de Lesniewski, la cual utiliza cuantificadores (sentenciales) en el propio cálculo sentencial --con lo cual de todos modos se presta a un reparo metodológico nada baladí, a saber: que el cálculo cuantificacional propiamente dicho no aportará ya como algo suyo propio, y de nuevas, la noción de cuantificador.
Hay evidentemente una confusión subyacente en la objeción ad hominem del Sr. Cuesta: confunde el cálculo sentencial mismo --que carece de cuantificadores-- con el estudio sintáctico y semántico de ese cálculo (o, mejor dicho --en mi opúsculo--: de un abanico de tales cálculos alternativos). Un fanático clasicista como el Sr. Cuesta debería mantenerse a salvo de esa confusión más que nadie, ya que --de conformidad con la solución más consagrada entre los clasicistas a las paradojas semánticas (solución exaltada por los más de ellos al rango de dogma de fe)-- lo que se dice sobre un cálculo dícese, no en el mismo lenguaje en que se expresa ese cálculo, sino en un metalenguaje; de suerte que el uso metalingüístico de los cuantificadores no presupone que entre los signos del lenguaje-objeto que estén siendo estudiados hayan de encontrarse también cuantificadores.
(Seruatis seruandis esa dualidad puede ser también aceptada por quienes --como el autor de las presentes glosas-- sostienen que puede haber identidad entre lenguaje-objeto y metalenguaje: el fragmento del lenguaje en el que esté acuñado el cálculo que se estudia puede carecer de signos que aparezcan en cambio en el estudio del mismo.)
Por otro lado, habría mucho que puntualizar acerca de la atribución a Aristóteles de los cuantificadores que hace el Sr. Cuesta: verdad es que en Aristóteles aparecen los enunciados clasificados por su cantidad, como universales o particulares, pero esa clasificación no equivale a un empleo del cuantificador, que es un descubrimiento de Frege. Es un asunto bien conocido y tratado en muchas obras.
Termina el Sr. Cuesta esta Sección de su comentario, corta pero sin desperdicio --pues ni un momento se relaja su espíritu de cruzada contra mí orientación lógica y mi trabajo--, con este remate en que una vez más hace gala de su cultura literaria:
¡Qué proezas pide el Sr. Cuesta! ¡Que en el índice de un libro figuren divisiones o capítulos de otro libro diferente! No, en el índice de los Apuntes introductorios no aparece el Anejo Nº 2 de Formalización y Lógica Dialéctica, porque, como era de esperar, ese anejo figura en cambio en el índice de ese otro opúsculo. Hubiera podido, eso sí, el Sr. Cuesta --para no desojarse buscando en el índice-- hojear la bibliografía que figura al final de los Apuntes introductorios; allí hubiera hallado la referencia a Formalización y Lógica Dialéctica. Si todavía tiene ánimos el Sr. Cuesta, lea esta última obra (puede pedirla al editor: la Pontificia Universidad Católica del Ecuador) y encontrar en ella lo que buscaba donde ni figuraba ni tenía por qué figurar, ni se prometía que iba a figurar.
¿Quién sufre una «distración»? Sin duda el propio Sr. Cuesta, que es el que, en este caso, debería aplicarse el cuento de batir como si Dios mesmo lo contemplara sus espadas (símil apropiado al estilo belicoso y agresivo del Sr. Cuesta, como adalid de las causas peores y más reaccionarias).NOTA 6
Por lo demás, el sistema Aj está expuesto en muy diversas publicaciones, ponencias aparecidas en actas de congresos y artículos en revistas especializadas. ¿Desconoce todo eso el Sr. Cuesta que se las da de saberlo todo?
«5.-- Antecedentes matemáticos de los cálculos simbólicos de la lógica»
El «reseñante», Sr. Cuesta, tiene derecho y deber de preguntarse muchas, muchas cosas. ¡Ojalá que por ese camino, preguntándose, llegue a enterarse de algo de lo mucho que parece desconocer él!
Ante todo, cabe decir lo siguiente. Cualquiera que sea la base para ese ataque del Sr. Cuesta contra mí, debe saber ese señor que --precisamente desde perspectivas como las que enmarcan el enfoque clasicista y muchos otros-- la fundamentación lógica no presupone un conocimiento de las matemáticas, sino a la inversa. No es de extrañar que uno de los más grandes lógicos matemáticos de nuestro siglo, Stanislaw Lesniewski (¿lo conocerá el Sr. Cuesta?), adoptara, con relación al estudio de las matemáticas, una actitud precisamente de deliberada omisión, basándose justamente en una posición teorética de fundamentación vertical --que debería concitarle parabienes del Sr. Cuesta. Veamos lo que al respecto dice Kotarbinski:
Aparte de eso, y para calibrar mis conocimientos matemáticos como parece querer hacerlo (si no, ¿a qué preguntarse lo que se pregunta?), puede el Sr. Cuesta consultar muchos de mis trabajos publicados en los que utilizo procedimientos del análisis no estándar de Robinson y de álgebra universal para modelizar los sistemas de cálculo sentencial y cuantificacional por mí descubiertos. Las más ponencias y comunicaciones que he presentado exponiendo esos resultados iban destinadas a congresos con participación más de matemáticos que de lógicos propiamente tales (o que filósofos, desde luego) y habían recibido calurosa aceptación por parte de los relatores, todos ellos matemáticos.
El resto de esta Sección del comentario del Sr. Cuesta, tras contarnos algunas anécdotas de autobiografía intelectual, traza un recorrido --a galope tendido naturalmente-- de los orígenes históricos de lo que él mismo llama «el Álgebra simbólica», citando a este respecto la obra de Gino Loria. En pocas líneas desfilan Descartes, Fermat, Newton, Bernouilli, Euler, Buffon, Cantor, con briznas de consideraciones sobre el cálculo infinitesimal, el de probabilidades y otros entremeses y condimentos, para desembocar en Boole, Peano, Peirce, Sheffer y Hilbert, todos ellos apenas más que citados.
El gran ignorado es Frege, el verdadero descubridor de la lógica matemática. ¡Allá el Sr. Cuesta con su versión de la historia o prehistoria de la lógica matemática! En esa «historia», aunque se cita a Leibniz, no se trata para nada de los trabajos lógicos de éste. Ni, naturalmente, aparecen para nada los problemas específicamente lógicos y filosóficos que movieron a Frege a poner en pie su sistema formal. La verdad es que no ve uno ilación ni conexión en el tránsito --o, mejor: salto brusco, según lo expone el Sr. Cuesta-- de problemas puramente matemáticos, como los del cálculo de probabilidades y el infinitesimal, a las cuestiones lógicas abordadas por Frege, Peano, Hilbert y Russell, entre otros.
Sea como fuere, no ve uno a santo de qué todo eso en unas dizque observaciones sobre mi opúsculo. ¿Obsérvase algo acerca de éste con ese excursus, a manera de divagación liviana y de pasatiempo, por el campo de la historia de la matemática? Si el reproche del Sr. Cuesta es que en mi trabajo no me entregaba a ese género de frivolidades o escarceos, lo que he de contestar es que, gracias a Dios, mi obra es científica y seria; no pretendo ser historiador de la matemática: ni es ni tiene por qué ser ése un campo de mis estudios; ni me voy a ocupar en sobrevuelos de ese estilo sacados de cualquier obra erudita o de consulta, pues para eso están esas obras, y no para ser resumidas y vulgarizadas en otras.
Además, cualquiera que sea el interés de todo eso, es de muy escasa pertinencia para el propósito y la temática de mi opúsculo. Y, además, resulta ilusorio creer que con esos datos históricos --valgan lo que valieren-- se ha explicado el origen de la lógica matemática. Tal origen hay que buscarlo más bien --o por lo menos en no menor medida-- en las preocupaciones ontológicas y epistemológicas que impulsaron a Frege a su gran obra. Comoquiera que sea, todo eso es harina de otro costal, tema a discutir independientemente de los méritos o deméritos de mi libro, que no aborda, ni tiene por qué abordar, nada de todo eso.
Claro que ahí está el motivo del reproche que, a este respecto, me dirige el Sr. Cuesta:
Es que parece ilimitada la capacidad de admiración del Sr. Cuesta. Se extraña de que en un trabajo que no es --ni pretende serlo-- de carácter histórico no se estén trayendo a colación antecedentes históricos de esta o aquella conceptualización, de este o aquel utillaje teorético utilizado.
Sobre el nexo entre la teoría de las probabilidades y las lógicas multivalentes no deseo pronunciarme; teoréticamente trátase de dos planteamientos muy diversos y con aplicaciones muy poco afines. (Claro que el Sr. Cuesta, como impenitente dogmático clasicista, es propenso a entender la multivalencia en un sentido subjetivístico, asimilando los valores veritativos no clásicos a meros valores de verosimilitud o cosa así y, de ese modo, acercándolos --de grado o por fuerza-- al ámbito de la teoría de probabilidades.)
Como ni por asomo quiere el Sr. Cuesta entrar en el estudio y discusión crítica del contenido teorético de mi trabajo, no sabe sino merodear, dar rodeos históricos, traer a colación lo que no viene a cuento, reprocharme que yo no me entregue a divagaciones de ese género; en suma: esquiva las cuestiones científicas de lógica y metalógica que eran las que debían ser abordadas, pues son ellas las que constituyen la temática del trabajo que dice estar comentando.
«6.-- Los Principia mathematica de Whitehead y Bertrand Russell»
El Sr. Cuesta no es «ingénuo». Por eso él no cree que se dé ese isomorfismo. Bien, no se da en efecto. Pero no aporta el Sr. Cuesta ni un atisbo siquiera de confrontación o contrastación entre la obra de Whitehead y Russell y la mía. Y era eso lo que parecería esperarse de su ardor belicoso, para despertar de su candidez al ingenuo lector que creyera en ese isomorfismo que él denuncia.
Si no se da tal isomorfismo es:
En otros trabajos --que puede consultar el Sr. Cuesta en las bibliotecas-- he desarrollado un cálculo sentencial mucho más amplio que At, un cálculo cuantificacional de primer orden basado en él y, sobre esa base, teorías de conjuntos y cálculos lambda en los que he mostrado que se demuestran como teoremas (versiones de) los axiomas de Peano para la aritmética.
Parece que al Sr. Cuesta, en saliendo de números, pocas cosas le interesan. Por ello no logra captar el interés de los análisis y estudios que aparecen en mi opúsculo sobre sistemas alternativos de lógica sentencial. Su lema sería: lógica sentencial la menos, la más magra porción, para pasar corriendo a cálculos en los que aparezcan (versiones de) teoremas de aritmética, teoría de números y todo eso.
Así que, para eludir una vez más el estudio de mi trabajo y, en su lugar, rellenar con alguna paja sus páginas de presuntas Observaciones al mismo, nos larga unas parrafadas sobre los Principia Mathematica plagadas de desaciertos e inexactitudes. Dice que en Principia Mathematica los autores han tratado de formalizar otra obra suya, escrita en inglés, sin más signos que los usuales en cualquier libro de Matemáticas; se titula «The Principles of Mathematics» 1903, y trata fundamentalmente de la aritmética finita y la aritmética transfinita de Cantor (1845-1918).
¡Cuánto error condensado en tan pocas líneas! Los Principies of Mathematics no son obra de esos dos autores, sino únicamente de Russell. Constituyen, además, una obra ante y sobre todo filosófica. Además, existen discrepancias doctrinales muy fuertes entre los Principles y los Principia, situándose unos y otros en los dos extremos de una línea evolutiva del pensamiento de Russell que ha sido estudiada por Jules Vuillemin (entre otros) en su obra Leçons sur la première philosophie de Russell.
He aquí uno de los ocurrentes comentarios del Sr. Cuesta sobre los Principia Mathematica:
Esa es la versión que el Sr. Cuesta nos brinda, de su propia cosecha, del principio de inducción matemática: quien hace un cesto hace ciento. Si bastara con esos adagios populares (a cuyo nivel desciende ahí el Sr. Cuesta desde sus alturas aristocráticas), entonces sobrara toda obra lógica como la de Frege, o la de Russell. Eso mismo de que quien hace un cesto hace ciento --o lo que en este caso correspondería más bien a tal adagio-- es algo que debe demostrarse. Al Sr. Cuesta le resulta enojoso todo lo que es lógica, formalización; adopta la posición antiformalista de los matemáticos adversos a la obra de Frege.
Condene el Sr. Cuesta a la hoguera, además de la mayor parte de los Principia Mathematica --salvados unos pocos botones de muestra-- obras similares, como la Mathematical Logic de Quine, o la Logic for Mathematicians de Rosser, todas las cuales, lejos de contentarse con formalizar un teorema y su demostración en cada capítulo, formalizan todas las demostraciones de todos los teoremas. Eso es lo riguroso. Lo demás es prometer y no dar.
Claro que se puede uno retrotraer al nivel del metalenguaje y en él demostrar que son teoremas del sistema todos los enunciados de los cuales hay en el sistema una prueba; mas, aparte de que hay que (de)mostrar cuáles son ésos --no presuponer que se los conoce por saber intuitivo, ciencia infusa o un conocimiento matemático a la pata la llana, obtenido sin rigurosa y estricta formalización--, el paso al metalenguaje introduce nuevos problemas teoréticos: una cosa es probar algo en un sistema S, otra probar (en un episistema) que ese algo es un teorema de S; si se quiere pasar de esta última prueba a la primera --que es la que interesa en último término--, tendrase que acudir a un epimorfismo traduccional, ciertamente factible --en determinados casos al menos-- pero que, de todos modos, involucra un utillaje conceptual más rico.
Termina así su sección el Sr. Cuesta:
A uno se le escapa a santo de qué, en unas pretendidas observaciones sobre mi opúsculo, todo eso de los capiteles, el claustro románico, el gran Maestro de la Sabiduría Divina y demás arabescos y estilísticas filigranas del Sr. Cuesta. ¡Allá él! En cualquier caso, lo que manifiesta una vez más es su prejuicio contra la lógica, contra la formalización. Por mucho que lo dude el Sr. Cuesta, es de gran interés formalizar, no solo la Summa Theologica del Aquinate, sino muchas obras filosóficas de la tradición; sólo así se puede zanjar --y aun eso sólo desde el ángulo de una determinada y particular lógica que se tome en cada caso como patrón de inferencia correcta-- cuándo se contienen en la obra en cuestión incoherencias y cuándo no, así como cuándo hay ilación lógica y cuándo no la hay.
Si el Sr. Cuesta adoptara una actitud menos displicente y más sensata respecto de tareas semejantes, no rechazaría con tanto desdén el intento de formalizar expresiones del habla en lenguaje natural que contienen modificadores adformulares de matiz y/o construcciones comparativas (intento que alienta una parte de la obra lógica llevada a cabo por quien esto escribe y que también se refleja en el opúsculo combatido por el Sr. Cuesta con tanto ensañamiento).
«7.-- Artículos mencionados y reseñados de don Lorenzo Peña en el Mathematical Reviews.»
Se echa de ver que el Sr. Cuesta dispone de poca información bibliográfica; a lo que parece no tiene acceso a ninguna revista filosófica y a pocas de lógica. De ahí que su única fuente de información sobre mi labor sea el Mathematical Reviews. No se ha tomado el Sr. Cuesta ni siquiera la molestia de consultar los pocos artículos reseñados en dicha publicación. La hostilidad sistemática de que hacia mí da pruebas se patentiza en esta observación:
Es increíble que un comentario bastante bien hecho y más bien elogioso por parte de Jan Berg sobre mi artículo sea resumido por el Sr. Cuesta mencionando tan sólo una crítica al final de dicho comentario --crítica que, además, no tiene el sentido que le atribuye el Sr. Cuesta. Por lo demás, ¿por qué no se ha tomado el Sr. Cuesta la molestia de leer mi propio artículo? ¿Es su costumbre la de alimentarse tan sólo de referencias indirectas en el abrevadero de Mathematical Reviews?
Termina el Sr. Cuesta con este alarde de erudición sus Observaciones:
Sí, y en cambio no figura el Sr. Cuesta como miembro de esa misma Sociedad, a la que yo sí pertenezco (la Association for Symbolic Logic). Si hubiera éste consultado el volumen de 1984 (en lugar de consultar alguno de los años 1979 a 1983) hubiera encontrado como filiación mía, ya no la Pontificia Universidad Católica del Ecuador, sino la Universidad de León.
Podría decirle yo al Sr. Cuesta que, siendo --muy al contrario de lo que le sucede a él, caballero al parecer de noble linaje-- un pobre descendiente de humildes labriegos y pecheros, tengo uno de esos castellanísimos apellidos que, por su ortografía y su fonética, resultan difíciles de adaptar a otros idiomas, y se ven adulterados al ser escritos por ahí fuera. ¡Qué le voy a hacer!
Lo de que aparezca hasta el 83 como profesor de la Universidad Pontificia del Ecuador tiene su explicación también. Habiendo sido de 1962 a 1972 un combatiente de la causa antifranquista, fui condenado por «rebeldía militar» por el delito de no comparecer a filas --estando yo como estaba empeñado en una lucha contra las mismas autoridades militares que me llamaban a enrolarme en el ejército que ellas mandaban. Por eso he tenido que pasar en el exilio, de 1965 a 1983, 18 años de mi vida, mientras otros disfrutaban de prebendas y valimientos bajo el régimen al que muchas veces luego dicen haber estado enfrentándose.
No pude regresar a mi Patria hasta septiembre de 1983, al haberme sido (¡por fin!) aplicada pocos meses antes la amnistía por mi «delito» y al haberme sido convalidado el doctorado (obtenido en Lieja en 1979) también meses antes y gracias a una medida (de amnistía académica, cabría denominarla) del ministro Seara. No es mi intención capitalizar todo ese pasado. No constituye mérito intelectual. Pero, cuando se me ataca furiosamente, como en ese escrito del Sr. Cuesta, y hasta parece serme reprochada mi estancia (como se ve, forzada) en el extranjero, tengo el deber de responder exponiendo los hechos y sus causas.
8.-- Anotación final
Concluirá esta réplica al malévolo comentario del Sr. Cuesta diciendo que fracasará quien sólo por ese comentario --o por esta respuesta-- quiera hacerse una idea del contenido de mis Apuntes introductorios a la lógica matemática elemental. Porque en verdad el Sr. Cuesta ha esquivado o sorteado toda consideración teorética sobre el contenido doctrinal, lógico y metalógico, de mi trabajo. No figura en sus «Observaciones» ni una sola crítica al contenido teorético, ni una sola muestra de que de veras haya leído y entendido algún capítulo de mi opúsculo; sólo ataques desaforados, ocurrencias a salto de mata, quisquillosidades y pejiguerías.
Hay autores que hacen una gran obra científica o investigativa. Hay autores que, por lo menos, hacen un gran aporte al pensamiento humano, proponiendo alguna teoría interesante que, por errada que se acabe a la postre revelando, nos ayude a mirar las cosas de otro modo o siquiera percatamos de por qué no deben ser miradas de ese modo. Hay quienes no hacen ninguna de esas dos tareas. Pero lo malo es que hay quienes, incapaces de hacer alguna tarea que --ni siquiera remotamente-- se aproxime a una de esas dos, sólo son --si es que lo son-- recordados por la historia como obstaculizadores, como rémoras, adversarios de audaces empresas intelectuales, encastillados en posiciones de poder desde las que hicieron lo posible por mantener a raya a quienes pugnaban por abrir nuevos cauces a la investigación y al pensamiento.
Uno de esos obstaculizadores es D. Norberto Cuesta Dutari. ¡Quiera Dios perdonarlo! Lo que es menos verosímil es que lo perdone el juicio histórico, al que él mismo se remite.
León enero 6 de 1986
Lorenzo Peña
Profesor No Numerario
Universidad de León, Facultad de Filosofía
24071 León, España
[NOTA 1]
V. WikiSalamanca - Enciclopedia libre de Salamanca, donde se afirma: «Fue catedrático de Matemáticas del Instituto Fray Luis de León y más tarde catedrático de la Universidad de Salamanca, a cuya biblioteca donó más de 5000 ejemplares. En su aspecto público, fue concejal del Ayuntamiento de Salamanca. Obras: Sinfonía del Infinito; El maestro Juan Justo García, presbítero natural de Zafra (1752-1830), segundo catedrático de Álgebra de la Universidad de Salamanca ...» Nótese que fue concejal bajo la tiranía franquista (desempeñaba el cargo en diciembre de 1964). Era claramente un hombre de la situación, pero --por ciertos indicios-- cabe colegir que no se había resignado del todo al giro que, en su política exterior, el franquismo se había visto forzado a dar después de 1945. El Sr. Cuesta fue seguramente un original. Adjunto a este escrito un elogioso y cariñoso recuerdo que uno de sus alumnos (anónimo) hace de él en su bitácora «Salamanca74». V. también otro panegírico en http://www.dma.ulpgc.es/profesores/pacheco/Cuesta2007.html, «Profesor Norberto Cuesta Dutari. Matemático (1907-1989)».
[NOTA 2]
El Profesor González Boixo, director --si mal no recuerdo-- del servicio de publicaciones, me dijo que, si bien el informe de Sacristán era muy positivo y favorable, no era relevante, por no ser el solicitado por el servicio: habían de atenerse al del Sr. Cuesta, aunque no les gustara. (De hecho me aclaró que habían surgido desavenencias entre la Universidad y el Sr. Cuesta en torno a cuestiones relacionadas con su informe, que a mí no me incumbían para nada.) Conque el texto no se publicó.
[NOTA 3]
Véase:
[NOTA 4]
El libro es el volumen 172 de la Synthese Library. ISBN 978-94-009-6377-1. DOI 10.1007/978-94-009-6375-7_21.
[NOTA 5]
En la transcripción de los pasajes aquí reproducidos del escrito del Sr. Cuesta se han respetado tanto los anacolutos como los errores de puntuación y faltas de ortografía.
[NOTA 6]
Otra distracción más es que --por una vez y sin que sirva de precedente-- se ha olvidado el Sr. Cuesta de consultar en un diccionario enciclopédico las fechas de nacimiento y de muerte de un autor que cita, en este caso Enrique Larreta.